MMATH II- TOPOLOGY IV - SEMESTRAL EXAM.

Max. marks : 60

Time : 3 hours

[15]

Answer all questions. You may use results proved in class after correctly stating them. Any other claim must be accompanied by a proof.

(1) Show for an open set $U\subseteq \mathbb{R}^2$ there is a commutative diagram

$$0 \longrightarrow \Omega^{0}(U) \xrightarrow{d} \Omega^{1}(U) \xrightarrow{d} \Omega^{2}(U) \longrightarrow 0$$

$$f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow$$

$$0 \longrightarrow C^{\infty}(U, \mathbb{R}) \xrightarrow{\text{grad}} C^{\infty}(U, \mathbb{R}^{2}) \xrightarrow{\text{rot}} C^{\infty}(U, \mathbb{R}) \longrightarrow 0$$

with f_1, f_2, f_3 isomorphisms. Recall that $rot(\phi_1, \phi_2) = (\partial \phi_1 / \partial x_2) - (\partial \phi_2 / \partial x_1).$ [10]

- (2) Let $U \subseteq \mathbb{R}^n$ be an open set and $f: U \longrightarrow \mathbb{R}^n$ an injective continuous map. Show that f(U) is open in \mathbb{R}^n and f maps U homeomorphically onto f(U). [10]
- (3) State the Jordan-Brouwer separation theorem. Let $\Sigma \subseteq \mathbb{R}^n$ $(n \ge 2)$ be homeomorphic to S^{n-1} and let U_1 and U_2 respectively be the interior and exterior domains of Σ . Compute $H^p(U_1)$ and $H^p(U_2)$ for $p \ge 0$. [2+8]
- (4) Construct a volume form on S^{n-1} , $n \ge 2$. [7]
- (5) Show that $\mathbb{R}P^{n-1}$ is orientable if and only if *n* is even. [8]
- (6) Compute $H^p(\mathbb{R}P^{n-1}), n \ge 2, p \ge 0.$